Central West Queensland region snapshot

The Central West Queensland region extends from the Northern Territory and South Australian borders in the west, through to Queensland’s Central Highlands in the east. The region occupies 23% of the state’s total area but only contains around 0.3% of the population.

How will climate change affect the Central West Queensland region?

In the future, the region can expect:
- higher temperatures
- hotter and more frequent hot days
- harsher fire weather
- more intense downpours

How can we deal with these changes?

Queensland often experiences climate extremes such as floods, droughts, heatwaves and bushfires. Climate change is likely to exacerbate the frequency and severity of these events. We will increasingly be affected by changes in temperature, rainfall, sea level and extreme weather conditions.

It makes sense to take appropriate action to better manage our climate risks. Well-considered and effective adaptation measures can limit the adverse impacts of climate change on communities, the economy and natural systems. We can achieve more if we act together to plan for and manage current and future climate impacts across different sectors and regions.

The Queensland Government is working with a range of stakeholders, using the best available science to address the risks climate change presents to our economy, environment, infrastructure and communities. This publication presents details of the expected changes to temperature and rainfall. It highlights the likely impacts on people, businesses and the environment and presents ways to respond. For more information on climate change in Queensland, visit www.qld.gov.au/environment/climate/climate-change.
Looking to the future

Our current climate
The Central West Queensland region has a semi-arid to arid climate with very hot summers and warm, dry winters.

The current average annual temperature is 24°C. The summer average is 30°C, autumn is 24°C, winter is 16°C and spring is 25°C.

Annual and seasonal average rainfall are variable, affected by local factors such as topography and vegetation, and broader scale weather patterns, such as the El Niño–Southern Oscillation.

Annual average rainfall is 326mm. Around half of this falls between December and February.

The region’s annual average potential evaporation is more than five times the annual average rainfall, which contributes to the depletion of soil moisture.

However, the climate is changing across Queensland.

Average temperatures across the state are currently 1°C higher than they were 100 years ago. Recent decades have shown a clear warming trend. Our climate is already highly variable but climate change is leading to shifts beyond this natural variability.

Our future climate
Our climate is changing primarily because increasing amounts of greenhouse gases in the atmosphere are trapping heat, warming the air and oceans.

To determine what our future climate might be, scientists use global climate models to simulate the Earth’s climate system. The models use a set of mathematical formulae that describe the physical processes of the atmosphere, ocean, land and ice.

Population, the economy, policy decisions and technology will all affect future emissions of greenhouse gases. We don’t know exactly what these effects will be, so to cover a range of possibilities, scientists use emissions scenarios called representative concentration pathways (RCPs) to develop climate projections. These projections describe a lower emissions future, where greenhouse gas emissions are substantially reduced (using a scenario termed RCP4.5), and a high emissions future, where high levels of greenhouse gas emissions are set to continue (using a scenario termed RCP8.5).

The projections in this summary are given for 20-year periods centred on 2030 and 2070. The 2030 high and low emissions scenarios are so similar that only the high emissions scenario has been used in this publication.

Projections are represented as a change relative to the average for the period 1986–2005.

For example, in 2070 under a high emissions scenario, temperature in the Central West Queensland region is projected to rise by 3.3°C (1.8 to 4.3°C). In this case, the middle temperature rise determined by all the models is 3.3°C. The range is between 1.8°C and 4.3°C, meaning 95% of model results indicated a rise of at least 1.8°C and 95% of the model results indicated a rise of 4.3°C or less.

The Queensland Government is committed to developing a transition strategy to reduce emissions and create low carbon economy jobs. There is more information in Advancing Climate Action in Queensland: Making the Transition to a Low Carbon Future, available at www.ehp.qld.gov.au.

Longreach 2030
In 2030, under a high emissions scenario, the climate of Longreach will be more like the current climate of Winton.

To find out what the future climate will be like where you live, use the climate analogues tool on the Climate Change in Australia website at www.climatechangeinaustralia.gov.au. The tool matches projected rainfall and maximum temperature with the current climate experienced in another location for the years 2030, 2050 and 2090.
Climate projections for Central West Queensland

Higher temperatures
Maximum, minimum and average temperatures are projected to continue to rise. For the near future (2030), the annually averaged warming is projected to be between 0.4 and 1.7°C above the climate of 1986–2005. By 2070, the projected range of warming is 1.2 to 4.3°C, depending on future emissions.

The region’s summer average temperature is 30°C. This could rise to over 31°C by 2030 and to over 34°C by 2070.

Hotter and more frequent hot days
There is likely to be a substantial increase in the temperature reached on the hottest days, and an increase in the frequency of hot days and the duration of warm spells.

Harsher fire weather
Fire weather is a measure of fuel dryness and hot, dry, windy conditions. When bushfires occur, more extreme fire behaviour can be expected.

More intense downpours
High climate variability is likely to remain the major factor influencing rainfall changes in the next few decades.

In 2070, rainfall changes continue to show a large amount of variability, with possibilities of a drier or wetter climate.

The intensity of heavy rainfall events is likely to increase.

Changes to drought are less clear
Projecting changes in the frequency and duration of drought is difficult. However, by late this century, under a high emissions scenario, it is likely that the region will experience more time in drought.

Climate change projections are based on Climate Change in Australia data from CSIRO and the Bureau of Meteorology. More detailed information on these and other climate variables is available at www.qld.gov.au/environment/climate/climate-change.
Climate risks, impacts and responses

The range of likely changes to Queensland’s climate in the coming years and decades presents opportunities and risks. Extensive work is being done to identify the likely impacts, sector by sector, and how best to respond to them.

<table>
<thead>
<tr>
<th>Sector</th>
<th>Climate risks</th>
<th>Impacts</th>
<th>Potential responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>House</td>
<td>↑ storm intensity</td>
<td>• Increased maintenance costs</td>
<td>• Consider future climate, bushfire and flood risk when locating and constructing new infrastructure</td>
</tr>
<tr>
<td></td>
<td>↑ fire weather</td>
<td>• Increased disruption to services</td>
<td>• Design buildings to accommodate changing climate</td>
</tr>
<tr>
<td></td>
<td>↑ heatwaves</td>
<td>• Increased energy and water usage</td>
<td>• Insure public assets</td>
</tr>
<tr>
<td>Airplane</td>
<td>↑ temperature</td>
<td>• Increased threats to tourism infrastructure</td>
<td>• Consider climate risks in emergency planning for tourist sites</td>
</tr>
<tr>
<td></td>
<td>↑ storm events</td>
<td>• Damage to popular environmental sites</td>
<td>• Adopt appropriate cancellation policies for extreme weather</td>
</tr>
<tr>
<td></td>
<td>↑ fire weather</td>
<td>• Risks to tourists unfamiliar with conditions</td>
<td>• Prepare for changing seasonal demand</td>
</tr>
<tr>
<td>Ground</td>
<td>↑ inundation and flooding</td>
<td>• Disruption to supply chains</td>
<td>• Business continuity planning</td>
</tr>
<tr>
<td></td>
<td>↑ fire weather</td>
<td>• Disruption to workplaces and infrastructure</td>
<td>• Shift critical infrastructure out of hazard zones</td>
</tr>
<tr>
<td></td>
<td>↑ heatwaves</td>
<td>• Loss of customers during emergency recovery</td>
<td>• Enable flexible working arrangements</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Diversify customer base and products</td>
</tr>
<tr>
<td>Cow</td>
<td>↑ temperature</td>
<td>• Changed distribution of pests and diseases</td>
<td>• Consider diversifying outputs or business</td>
</tr>
<tr>
<td></td>
<td>↑ hot days</td>
<td>• Heat stress on livestock and crops</td>
<td>• Establish shelter belts to increase shade, e.g. for cattle</td>
</tr>
<tr>
<td></td>
<td>↑ fire weather</td>
<td>• Farms affected by bushfire</td>
<td>• Improve water efficiency</td>
</tr>
<tr>
<td></td>
<td>↑ drought risk</td>
<td>• Reduced water security</td>
<td></td>
</tr>
<tr>
<td>Plant</td>
<td>↑ fire weather</td>
<td>• Existing threats to flora and fauna are exacerbated</td>
<td>• Develop strategies to respond to new and emerging diseases and pests</td>
</tr>
<tr>
<td></td>
<td>↑ temperature</td>
<td>• Changes to habitat</td>
<td>• Link habitats to allow species to move</td>
</tr>
<tr>
<td></td>
<td>↑ drought risk</td>
<td>• Altered disturbance regimes</td>
<td>• Consider moving selected populations to new areas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Changing dynamics of invasive species</td>
<td></td>
</tr>
<tr>
<td>Heart</td>
<td>↑ heatwaves</td>
<td>• More stress on health and emergency services</td>
<td>• Use existing social networks to support vulnerable community members</td>
</tr>
<tr>
<td></td>
<td>↑ fire weather</td>
<td>• More heat-related deaths, particularly among the elderly and disadvantaged</td>
<td>• Implement rural mental health care programs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Mental health effects</td>
<td>• Consider climate risks when developing emergency planning for schools, hospitals, services</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Changes in disease occurrence</td>
<td>• Increase green spaces and cool zones for heat stress</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainfall</td>
<td>↑ rainfall intensity and flooding</td>
<td>• Increased fire season duration and fire intensity will affect urban fringe communities</td>
<td>• Improve bushfire safety standards for urban development</td>
</tr>
<tr>
<td></td>
<td>↑ fire weather</td>
<td>• Increased storm intensity will increase flooding risk</td>
<td>• Increase focus on community preparedness and prevention</td>
</tr>
<tr>
<td></td>
<td>↑ heatwaves</td>
<td></td>
<td>• Update risk management standards to account for increased risk from climate change</td>
</tr>
</tbody>
</table>
Adapting to climate change

Queensland’s environment, economy and communities are already experiencing the impacts from a changing climate. The development of a Queensland Climate Adaptation Strategy will assist government, businesses and communities to manage and respond to our changing climate.

Human settlements and infrastructure

More than 60% of the region’s 12,500 inhabitants live in 19 towns, with populations ranging from 15 to 3,800 people. The rest are widely scattered across extensive pastoral country. These towns service the region’s grazing industry and provide community infrastructure, including community halls, sporting facilities, postal services, hotels and convenience shopping.

Communities in the region are regularly exposed to climate extremes, and therefore may be better able to adapt to these conditions than some other communities. However, if these extremes become more frequent and of longer duration, there will be greater challenges and energy demands for creating a comfortable living environment.

Flooding, due to more intense extreme storms, could affect water, sewerage, storm water, transport and communications infrastructure. Flash flooding and wind damage will exacerbate the impacts. This may increase the cost of insurance.

Increased bushfire risk will threaten infrastructure, homes and agricultural industries. Increased extent and frequency of drought will impact water supplies for towns and communities.

Adaptation measures

- Consider how to adapt existing homes to deal with projected inundation and higher temperatures.
- Plan for new developments and infrastructure to take into account climate impacts and extreme events such as flooding, storms and extreme heat.

Tourism

Tourism in Central West Queensland is focused on the region’s natural and cultural heritage and unspoilt outback landscapes.

Increases in temperature could reduce the tourist season, as extended heatwaves will make the region less attractive to visitors. Increased bushfire and flooding risk may threaten tourism infrastructure and damage popular environmental sites. The increased risks to tourists unfamiliar with these conditions will need to be managed.

Adaptation measures

- Consider climate risks in emergency planning for tourist sites.
- Adopt appropriate cancellation policies for extreme weather.
- Prepare for changing seasonal demand.

‘Ready Set Go’ is a smartphone app designed to assist tourism operators prepare for the impacts of extreme weather events, such as floods and cyclones. The app has been developed by the Queensland Tourism Industry Council, EC3 Global and National Centre for Studies in Travel and Tourism. For more information visit www.apple.com/au/itunes and http://play.google.com.
Business and industry
The region’s businesses support the agricultural economy and the communities that serve them. Towns in the region provide access to health services, mustering areas and stores.

An increase in hotter days will threaten business viability and reduce working hours, particularly for outdoor work. Extended dry seasons will increase stress on water supplies.

Businesses that are prepared will be able to ensure continuity of supply to their clients during/following a disruptive event. Investment in infrastructure, insurance and risk planning will increase as businesses prepare for the impacts.

Adaptation measures
• Undertake business continuity planning accounting for likely increases in extreme weather and events.
• Shift critical infrastructure out of hazard zones.
• Enable flexible working arrangements.
• Diversify customer base and products.

Agriculture
The majority of Central West Queensland’s agricultural area is used for grazing of beef cattle. Water is extracted from the Great Artesian Basin that provides a relatively stable supply.

In the longer term, changes to rainfall will affect the availability of water from the Basin. Increased hot days will harm cattle health and productivity. Climatic changes could alter the distribution and incidence of pests and diseases.

Longer and more frequent droughts associated with more extremes of climate, and fewer wetter recovery periods would lead to reduced forage cover and reduced carrying capacity. Cattle are likely to be exposed to greater heat stress.

Adaptation measures
• Improve management of pests and disease by introducing more species of dung fauna (control of buffalo fly larvae), greater use of traps and baits (buffalo and sheep blowflies) and vaccines (cattle ticks and worms).
• Increase or maintain cattle breeds which provide cattle tick and buffalo fly resistance.
• Manage climate variability and change by using forecasts of rainfall (and temperature) in decision-making about crops and planting times.
• Supplementary feeding, early weaning and culling animals at risk can reduce mortalities in dry conditions.

The Managing Climate Variability program has developed CliMate, designed for producers who seek to understand recent weather and probabilities of future weather events. The tool uses weather data, statistics and forecasts with farming system information, such as soil water and heat sum. It is available at www.australianclimate.net.au.
Biodiversity and iconic ecosystems

The Central West Queensland region is the most diverse in the state, covering seven biogeographic zones. It ranges from the eucalypt woodlands of the Desert Uplands along the Great Dividing Range, through to the Mitchell Grass Downs and the vast flood plains of the Channel Country, to the Simpson Desert dune fields. It also includes the Mount Isa Inlier, significant areas of Mulga Lands and a small part of the Brigalow Belt South.

For further information on Queensland’s bioregions see www.qld.gov.au/environment/plants-animals/plants/ecosystems/framework/.

Compared with other regions in the state, the biodiversity of the region is relatively undisturbed and well-adapted to coping with a variable climate. In the Channel Country, flooding plays a significant role in the lifecycles of a large number of waterbird species. The region is also home to many reptiles and birds of prey.

The impact of climate change is a concern, with projections of significant moisture deficits. Even a small (1–2°C) rise in temperature can have a significant impact on biodiversity and natural systems. This may place additional stresses on the productivity and ecology of the region.

Adaptation measures

- Protect all permanent waterholes.
- Manage fire, invasive pasture grasses (buffel grass), feral animals (goats, horses) and invasive natives (noisy miners) to reduce losses and protect rare plants.
- Prevent vegetation thickening in conservation areas.
- Undertake weed management and rehabilitation of native plant species, including community education.

NatureAssist targets properties that have significant conservation values, connectivity and predicted resilience to a changing climate for protection. Landholders are able to work with the Department of Environment and Heritage Protection to voluntarily secure their properties under a Nature Refuge Agreement, and employ targeted conservation actions to enhance the properties’ resilience. Further information is available at www.ehp.qld.gov.au.

Human health

Higher temperatures and more hot days could result in heat exhaustion and increased mortality among vulnerable people, including the very young and old. People in locations that have not regularly experienced such high temperatures may struggle to adapt to these conditions.

Increases in extreme events can lead to increased pressure on health systems, including an increased demand for health professionals, ambulance and hospital workers. Many parts of the country already find it hard to recruit dedicated health care and social service professionals.

Rural, regional and remote communities are particularly exposed in a deteriorating climate. Climate change compounds the chronic difficulties and inequities that already face many communities.

The emotional and psychological toll of disasters can linger for months, even years, affecting whole families, the capacity for people to work and the wellbeing of the community.

Adaptation measures

- Develop agreements with workers on how to manage extreme hot days.
- Clearly identify public cool zones or shaded areas for the community.
- Develop social support networks.

Queensland Health is aware of the impact that drought and disasters has on people and communities. The Tackling Adversity in Regional Drought and Disaster communities through integrating Health Services (TARDDiHS) grants program provides assistance to build community networks that foster social connectedness, improve help-seeking behaviour, build capacity for learning to live with change and uncertainty, and promote positive adaptability in response to adversity. More information is available at www.health.qld.gov.au/clinical-practice/guidelines-procedures/clinical-staff/mental-health/grants/rural-remote-community.
Emergency services
The region is prone to extended periods of drought followed by occasional flooding. Bushfires can be significant in some years and threaten farms and communities.

Higher temperatures and longer dry seasons will increase bushfire risk, particularly for towns and agricultural enterprises.

Increases in storm intensity will increase the risk of flash flooding.

Adaptation measures
• Improve bushfire safety standards for urban development.
• Increased focus on community preparedness.
• Update risk management standards to account for increased risk from climate change.

MetEYE, a map of weather observations and official forecasts produced by the Bureau of Meteorology, can increase community preparedness by providing forewarning of extreme weather events such as heatwaves, cyclones and flooding rain. This service provides seven-day forecasting of many climate variables including temperature, wind, rain, humidity, frost and snow. See www.bom.gov.au/australia/meteye/.

Queensland climate change resources
To find out more about the Queensland Government’s policy response to climate change, including commitments to reduce emissions and adapt to our changing climate, visit www.qld.gov.au/environment/climate/about-climate-change.

The Bureau of Meteorology website provides access to weather forecasts, severe weather warnings, observations, flood information, marine and high seas forecasts and climate information at www.bom.gov.au.

Climate outlooks are available from the LongPaddock website at www.longpaddock.qld.gov.au.

Information about the future climate and its impacts, and adaptation strategies, is available from the Climate Change in Australia website, produced by CSIRO and the Bureau of Meteorology, at www.climatechangeinaustralia.gov.au.

What’s happening in your region?
The Queensland Government is interested to know what innovative climate adaptation initiatives are happening in your region. You can share this information by emailing adaptation@ehp.qld.gov.au.