How will climate change affect the Maranoa and District region?

In the future, the region can expect:
- higher temperatures
- fewer frosts
- hotter and more frequent hot days
- less rainfall in winter and spring
- harsher fire weather
- more intense downpours

How can we deal with these changes?

Queensland often experiences climate extremes such as floods, droughts, heatwaves and bushfires. Climate change is likely to exacerbate the frequency and severity of these events. We will increasingly be affected by changes in temperature, rainfall, sea level and extreme weather conditions.

It makes sense to take appropriate action to better manage our climate risks. Well-considered and effective adaptation measures can limit the adverse impacts of climate change on communities, the economy and natural systems. We can achieve more if we act together to plan for and manage current and future climate impacts across different sectors and regions.

Maranoa and District region snapshot

The Maranoa and District region stretches from the Carnarvon Ranges in the north, to the New South Wales border in the south, and from Mungallala in the west to about 20km east of Miles. The main towns include Roma, Condamine, St George and Goondiwindi.
Looking to the future

Our current climate
The Maranoa and District region has a semi-arid climate with very hot summers and warm dry winters. The average annual temperature is 20°C. The summer average temperature is 27°C, autumn is 20°C, winter is 13°C and spring is 21°C.

Annual and seasonal average rainfall are variable, affected by local factors such as topography and vegetation, and broader scale weather patterns, such as the El Niño–Southern Oscillation.

Annual average rainfall is 517mm, with most rain occurring from October to March either as heavy thunderstorms or as tropical rain depressions.

The region’s annual average potential evaporation is approximately three times the annual average rainfall, which contributes to the depletion of soil moisture.

However, the climate is changing across Queensland. Average temperatures across the state are currently 1°C higher than they were 100 years ago. Recent decades have shown a clear warming trend. Our climate is already highly variable but climate change is leading to shifts beyond this natural variability.

Our future climate
Our climate is changing primarily because increasing amounts of greenhouse gases in the atmosphere are trapping heat, warming the air and oceans.

To determine what our future climate might be, scientists use global climate models to simulate the Earth’s climate system. The models use a set of mathematical formulae that describe the physical processes of the atmosphere, ocean, land and ice.

Population, the economy, policy decisions and technology will all affect future emissions of greenhouse gases. We don’t know exactly what these effects will be, so to cover a range of possibilities, scientists use emissions scenarios called representative concentration pathways (RCPs) to develop climate projections. These projections describe a lower emissions future, where greenhouse gas emissions are substantially reduced (using a scenario termed RCP4.5), and a high emissions future, where high levels of greenhouse gas emissions are set to continue (using a scenario termed RCP8.5).

The projections in this summary are given for 20-year periods centred on 2030 and 2070. The 2030 high and low emissions scenarios are so similar that only the high emissions scenario has been used in this publication.

Projections are represented as a change relative to the average for the period 1986–2005.

For example, in 2070 under a high emissions scenario, temperature in the Maranoa and District region is projected to rise by 3.2°C (1.7 to 4.1°C). In this case, the middle temperature rise determined by all the models is 3.2°C. The range is between 1.7°C and 4.1°C, meaning 95% of model results indicated a rise of at least 1.7°C and 95% of the model results indicated a rise of 4.1°C or less.

The Queensland Government is committed to developing a transition strategy to reduce emissions and create low carbon economy jobs. There is more information in Advancing Climate Action in Queensland: Making the Transition to a Low Carbon Future, available at www.ehp.qld.gov.au.

St George 2030
In 2030, under a high emissions scenario, the climate of St George will be more like the current climate of Charleville.

To find out what the future climate will be like where you live, use the climate analogues tool on the Climate Change in Australia website at www.climatechangeinaustralia.gov.au. The tool matches projected rainfall and maximum temperature with the current climate experienced in another location for the years 2030, 2050 and 2090.
Higher temperatures

Maximum, minimum and average temperatures are projected to continue to rise. For the near future (2030), the annually averaged warming is projected to be between 0.2 and 1.7°C above the climate of 1986–2005. By 2070, the projected range of warming is 1.2 to 4.1°C, depending on future emissions.

The region’s current summer average temperature is 27°C. This could rise to over 28°C by 2030 and to over 31°C by 2070.

Less rainfall in winter and spring

High climate variability is likely to remain the major factor influencing rainfall changes in the next few decades.

Decreases in winter and spring rainfall are projected by 2070. However, high variability will continue.

The intensity of heavy rainfall events is likely to increase.

Hotter and more frequent hot days

There is likely to be a substantial increase in the temperature reached on the hottest days, and an increase in the frequency of hot days and the duration of warm spells.

Fewer frosts

A substantial decrease in the frequency of frost risk days is projected by the end of the century.

Harsher fire weather

Fire weather is a measure of fuel dryness and hot, dry, windy conditions. Climate change is likely to result in harsher fire weather in the future.

Projected annual and seasonal rainfall changes for the Maranoa and District region. The horizontal line on each bar is the middle (median) projected rainfall change. The extent of each bar indicates the range of projected changes.

Projected annual average temperature changes for the Maranoa and District region. The horizontal line on each bar is the middle (median) projected temperature change. The extent of each bar indicates the range of projected changes.

Changes to drought are less clear

Projecting changes in the frequency and duration of drought is difficult. However, by late this century, under a high emissions scenario, it is likely that the region will experience more time in drought.

Climate change projections are based on Climate Change in Australia data from CSIRO and the Bureau of Meteorology. More detailed information on these and other climate variables is available at www.qld.gov.au/environment/climate/climate-change.
Climate risks, impacts and responses

The range of likely changes to Queensland’s climate in the coming years and decades presents opportunities and risks. Extensive work is being done to identify the likely impacts, sector by sector, and how best to respond to them.

<table>
<thead>
<tr>
<th>Sector</th>
<th>Climate risks</th>
<th>Impacts</th>
<th>Potential responses</th>
</tr>
</thead>
</table>
| House | ▲ storm intensity, ▲ fire weather, ▲ heatwaves | • Increased maintenance costs
• Increased disruption to services
• Increased energy and water usage | • Consider future climate, bushfire and flood risk when locating and constructing new developments and infrastructure
• Increase road heights
• Insure public assets |
| | ▲ inundation and flooding, ▲ fire weather, ▲ heatwaves | • Disruption to supply chains
• Disruption to workplaces and infrastructure
• Loss of customers during emergency recovery | • Business continuity planning
• Shift critical infrastructure out of hazard zones
• Enable flexible working arrangements
• Diversify customer base and products |
| | ▲ heatwaves, ▲ flooding, ▲ fire weather | • Damage to cultural sites
• Loss of significant ecosystems | • Identify cultural sites at risk and mitigate impacts
• Review and document cultural practices
• Increase cultural activities and ceremonies to transfer knowledge |
| | ▲ temperature, ▲ hot days, ▲ fire weather, ▲ rainfall, ▲ drought risk | • Changed distribution of pests and diseases
• Heat stress on livestock and crops
• Farms affected by bushfire
• Reduced water security | • Consider diversifying outputs or business
• Consider different crop varieties and sowing times
• Improve water efficiency |
| | ▲ fire weather, ▲ temperature, ▲ rainfall, ▲ drought risk | • Existing threats to flora and fauna are exacerbated
• Changes to habitat
• Altered disturbance regimes
• Changing dynamics of invasive species | • Develop strategies to respond to new and emerging diseases and pests
• Link habitats to allow species to move
• Consider moving selected populations to new areas |
| | ▲ heatwaves, ▲ fire weather | • More stress on health and emergency services
• More heat-related deaths, particularly among the elderly and disadvantaged
• Mental health effects
• Changes in disease occurrence | • Use existing social networks to support vulnerable community members
• Implement rural mental health care programs
• Consider climate risks when developing emergency planning for schools, hospitals, services
• Increase green spaces and cool zones for heat stress |
| | ▲ inundation and flooding, ▲ fire weather, ▲ heatwaves, ▲ rainfall intensity | • Increased fire season duration and fire intensity will affect communities
• Increased storm intensity will increase flooding risk | • Improve bushfire safety standards for development
• Increased focus on community preparedness and prevention
• Update risk management standards to account for increased risk from climate change |
Adapting to climate change

Queensland’s environment, economy and communities are already experiencing the impacts from a changing climate. The development of a Queensland Climate Adaptation Strategy will assist government, businesses and communities to manage and respond to our changing climate.

Human settlements and infrastructure
Roma, St George and Mitchell are the major towns that service the region. Extraction of natural gas is supported by a network of pipelines that connect to Brisbane and Gladstone.

Flooding, due to more intense extreme storms, could affect water, sewerage, stormwater, transport and communications infrastructure. Flash flooding and wind damage could exacerbate these impacts. This may increase the cost of insurance to business and the community.

Increased bushfire risk will threaten infrastructure, homes and agricultural industries. Increased extent and frequency of drought will impact water supplies for towns and communities.

Adaptation measures
• Consider how to adapt existing homes and communities to deal with projected inundation.
• Plan for new developments and infrastructure to take into account climate impacts and extreme events such as flooding and bushfires.

Business and industry
The region offers significant, relatively untapped reserves of thermal coal and natural gas. This has seen the development of a number of power stations to supply eastern Australia’s growing energy needs. The extensive gas pipeline network in the Maranoa and District region supports further exploration and development of natural gas reserves.

Increased frequency of flooding and inundation, bushfires and heatwaves may disrupt supply chains, make it difficult for staff to get to work and prevent customers from accessing services and products. Extreme events may also damage workplaces, equipment and facilities, especially if the businesses are unprepared. This will increase the cost of insurance.

Flooding can affect contaminated water storage, requiring additional security and protection measures. Conversely, droughts can reduce the available water for minerals processing and mine operations, and create competition for water resources with other users, such as communities and farmers.

Businesses that are prepared will be able to ensure continuity of supply to their clients during/following a disruptive event. Investment in infrastructure, insurance and risk planning will increase as businesses prepare for the impacts.

Adaptation measures
• Undertake business continuity planning accounting for likely increases in extreme weather and events.
• Shift critical infrastructure out of hazard zones.
• Enable flexible working arrangements.
• Diversify customer base and products.
Indigenous communities and culture

The region is home to almost 1,600 Indigenous people, representing around 10% of the region’s total population. Maranoa–Balonne has a proud Indigenous and European cultural heritage. Considerable effort has been made to record the rituals, significant places, stories and customs of the region’s Aboriginal people—the Bidjara, Bigamubul, Gunggari, Iman, Kooma and Mandandanji.

Significant Indigenous cultural values are attached to the natural environments of the region and strong links have been maintained by the Indigenous community to country and wildlife, with access to land and its resources crucial for cultural value maintenance. The impacts of a changing climate on biodiversity and ecosystems will affect the integrity of these connections.

Adaptation measures

- Identify cultural sites at risk and mitigate impacts.
- Review and document cultural practices.
- Increase cultural activities and ceremonies to transfer knowledge.

Agriculture

The Maranoa and District region is predominantly agricultural, based on sheep and cattle grazing, grain and cereal cropping, irrigated cotton cropping, cypress pine timber production and some horticulture (e.g. melons and table grapes). A transition from wool to beef cattle production has occurred over the past two decades. Feedlot production of beef cattle to capitalise on local grain supplies is becoming more prominent.

A native timber industry, with a major focus on the harvest and milling of cypress pine, contributes significantly to the local economies of Injune, Roma, Mungallala, Surat and Mitchell.

Water is arguably the region’s most important natural resource. Its availability underpins urban settlement, agricultural production and the development of the resources and energy sector.

Increased temperatures may lead to heat damage to horticultural crops, difficulties in supplying sufficient water to meet demand, and stress on livestock. Conditions may increase plant diseases, weeds and pests, and warmer conditions would allow some pest species to move southwards into areas where they are currently excluded. Lower rainfall and increasing evaporation will cause more frequent depletion of soil moisture, reduced ground cover and lower livestock carrying capacity.

Adaptation measures

- Manage climate variability and change by using forecasts of rainfall (and temperature) in decision-making about crops and planting times.
- Monitor the spread of pests, weeds and disease.

The Queensland Government’s LongPaddock website provides climate information, seasonal forecasts and a range of decision support tools to assist producers to improve their climate risk management. Visit www.longpaddock.qld.gov.au.
Biodiversity and iconic ecosystems

The region includes the Brigalow Belt and Mulga Lands bioregions. The Brigalow Belt is the largest bioregion in Queensland. It is rich in species, including large numbers of plants and animals with small ranges, and threatened species such as the glossy black cockatoo and evergreen vine thickets. Dominant plants on the Mulga Lands bioregion are resilient to a variable and changing climate. However, increased warming and extended drought periods will significantly threaten species in the region with small ranges and limited ability to migrate.

For further information on Queensland’s bioregions see www.qld.gov.au/environment/plants-animals/plants/ecosystems/framework/.

In the rangelands ecosystems, more frequent and severe droughts would be detrimental to ground cover and possibly grassland composition. Increased deep soil cracking with more frequent or intense droughts may particularly affect perennial grasses.

Adaptation measures

- Undertake weed management and rehabilitation of native plant species, including community education.
- Place restrictions on weedy plants grown and sold.
- Increase conservation of forests on fertile soil for koalas, sugar gliders and other foliage-feeding fauna.

NatureAssist targets properties that have significant conservation values, connectivity and predicted resilience to a changing climate for protection. Landholders are able to work with the Department of Environment and Heritage Protection to voluntarily secure their properties under a Nature Refuge Agreement, and employ targeted conservation actions to enhance the properties’ resilience. Further information is available at www.ehp.qld.gov.au.

Human health

Higher temperatures and more hot days could result in heat exhaustion and increased mortality among vulnerable people, including the very young and old. People in locations that have not regularly experienced such high temperatures may struggle to adapt to these conditions.

Increases in extreme events can lead to increased pressure on health services, including an increased demand for health professionals, ambulance and hospital workers. Many parts of the country already find it hard to recruit dedicated health care and social service professionals.

Rural, regional and remote communities are particularly exposed in a deteriorating climate. Climate change compounds the chronic difficulties and inequities that already face many communities.

The emotional and psychological toll of disasters can linger for months, even years, affecting whole families, the capacity for people to work and the wellbeing of the community.

Adaptation measures

- Develop agreements with workers on how to manage extreme hot days.
- Clearly identify public cool zones or shaded areas for the community.
- Develop social support networks.

Queensland Health is aware of the impact that drought and disasters has on people and communities. The Tackling Adversity in Regional Drought and Disaster communities through integrating Health Services (TARDDiHS) grants program provides assistance to build community networks that foster social connectedness, improve help-seeking behaviour, build capacity for learning to live with change and uncertainty, and promote positive adaptability in response to adversity. More information is available at www.health.qld.gov.au/clinical-practice/guidelines-procedures/clinical-staff/mental-health/grants/rural-remote-community.
Emergency services
The region is prone to extended periods of drought followed by occasional flooding. Bushfires can be significant in some years and threaten farms and communities.

Higher temperatures and longer dry seasons will increase bushfire risk, particularly for towns and agricultural enterprises.

Increases in storm intensity will increase the risk of flash flooding.

Adaptation measures
• Improve bushfire safety standards for urban development.
• Increase focus on community preparedness.
• Update risk management standards to account for increased risk from climate change.

MetEYE, a map of weather observations and official forecasts produced by the Bureau of Meteorology, can increase community preparedness by providing forewarning of extreme weather events such as heatwaves, cyclones and flooding rain. This service provides seven-day forecasting of many climate variables including temperature, wind, rain, humidity, frost and snow. See www.bom.gov.au/australia/meteye/.

Queensland climate change resources
To find out more about the Queensland Government’s policy response to climate change, including commitments to reduce emissions and adapt to our changing climate, visit www.qld.gov.au/environment/climate/about-climate-change.

The Bureau of Meteorology website provides access to weather forecasts, severe weather warnings, observations, flood information, marine and high seas forecasts and climate information at www.bom.gov.au.

Climate outlooks are available from the LongPaddock website at www.longpaddock.qld.gov.au.

Information about the future climate and its impacts, and adaptation strategies, is available from the Climate Change in Australia website, produced by CSIRO and the Bureau of Meteorology, at www.climatechangeinaustralia.gov.au.

What’s happening in your region?
The Queensland Government is interested to know what innovative climate adaptation initiatives are happening in your region. You can share this information by emailing adaptation@ehp.qld.gov.au.